Roeblade og strandopskyl? Hvor finder vi økonomisk og bæredygtigt larvefoder?

Dansk Bioøkonomi Konference 2019, Sakskøbing

Lars-Henrik Lau Heckmann, Sektionsleder, ph.d.

Main challenges of the insect industry

Upscaling (industrial level)

- Insect biology in production environment
- Development of (customized) automation
- Development of species-specific feed

Legal barriers (EU) in feed and food

- Increasing the knowledge-level on feed/food safety of insects
- Political priority to promote the use of insects as feed and food

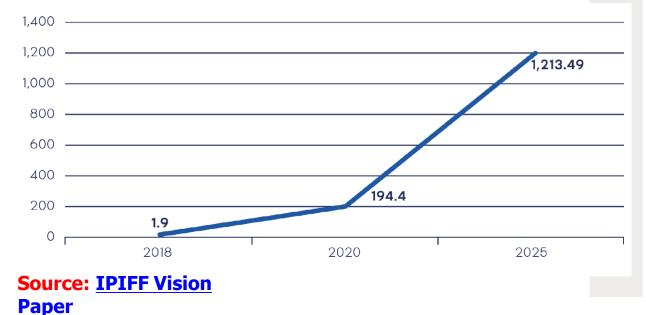
Consumer acceptance

Information...

EU insect production – current and future volumes

Did you know?

15


€355

Different countries represented Million Invested in members' companies

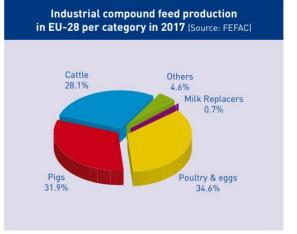
>€500M private investments by 2019-Q1

Estimated volumes of production of insect protein until 2025 in Europe (in thousands of tonnes)

Insects: EU regulatory overview – feed (generic)

Seven species defined by EU as farmed animals for feed use

Allowed for aquaculture since 1st July 2017


Currently legal US/CA – EU expected in 2019

Currently not legal EU or US/CA – EU expected in 2020⁺

Markets (Pet food and feed)

- Pet food (EU)
 - ~8 mill t/yr insects may capitalize on ~1M t/yr
- Feed (EU)
 - Aquaculture (global): 3M t fish meal/yr needed in 2030-2040 – insects may capitalize on >1M t/yr
 - Poultry: ~55M t/yr insects may capitalize on >5M
 t/yr (poultry expected to double by 2050)
 - Pigs: ~51M t/yr insects may capitalize on >5M t/yr

BIOCAS (01 July 2017 - 30 June 2021)

GULDBORGSUND

North Sea Region

European Regional Development Fund

EUROPEAN UNION

Substrate selection for BSF* feed trial

*Black soldier fly (Hermetia illucens)

Dry matter (dm), protein, lipid and ash content (%) and availability of different substrates from Guldborgsund Municipality.

Substrates	Dry matter (% dm)	Protein (% dm)	Lipid (% dm)	Ash (% dm)	Seasonability
Seaweed	13	7	1	31	all year
Spent grain	17	25	11	3	all year
Apple pomace	20	5	4	4	autumn
Wheat	88	12	3	1	all year
Rapeseed cake	74	35	10	8	all year
Sugarbeet tops	14	29	3	24	autumn
Malt	75	24	3	7	all year
Butter cookies	96	6	22	1	all year

uropean Regional Development Fund EUROPEAN UNION

Diet formulation for BSF feed trial

Percentage of different substrates and water used in the formulation of 4 diets

Substrates	Diet 1 (%)	Diet 2 (%)	Diet 3 (%)	Diet 4 (%)
Seaweed	10	5	0	0
Spent grain	15	20	19	25
Apple pomace	0	10	0	10
Wheat	20	10	11	10
Rapeseed cake	0	2	0	2
Sugarbeet tops	5	0	2	0
Malt	5	10	3	10
Butter cookies	5	0	3	0
Water	40	43	62	43

GULDBORGSUND

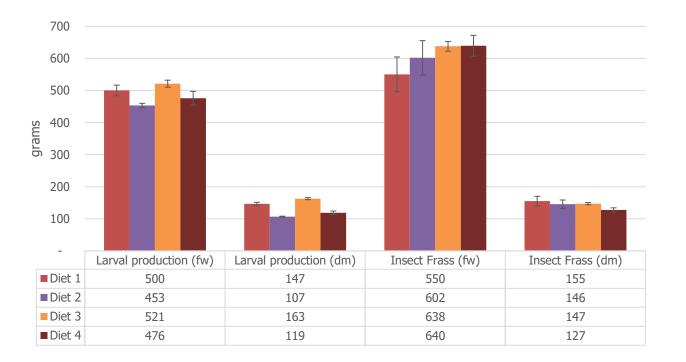
DANISH TECHNOLOGICAL INSTITUTE

Experimental parameters of BSF feed trial

Total protein, lipid and ash content of different diets used in the dietary experiment

	Diet 1	Diet 2	Diet 3	Diet 4
Protein (% dm)	24	28	19	29
Lipid (% dm)	10	7	9	7
Ash (% dm)	6	7	3	6

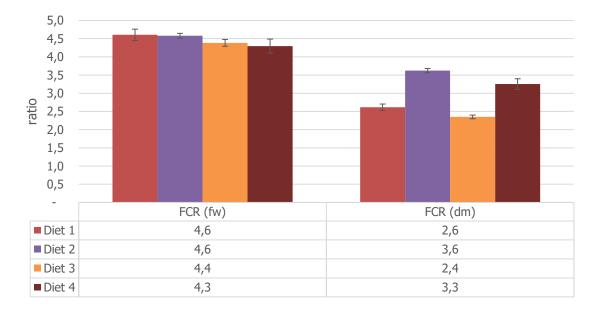
- Tray size: 30x20 cm
- Replicates: 3 per diet
- Temperature: 27°C
- Density: 11 larvae/cm²
- Total feed per replicate: 2 kg
- Dry matter: 19%
- Feeding episodes: 3
- Experimental time: 12 days



GULDBORGSUND

Dietary experiment

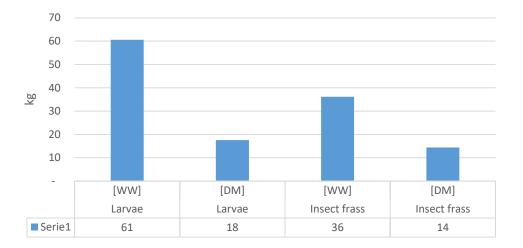
Larval and insect frass production during the dietary experiments ($avg \pm sd$)


DANISH TECHNOLOGICAL INSTITUTE

Dietary experiment

Feed conversion ratio in the dietary experiment ($avg \pm sd$)

European Regional Development Fund EUROPEAN UNION

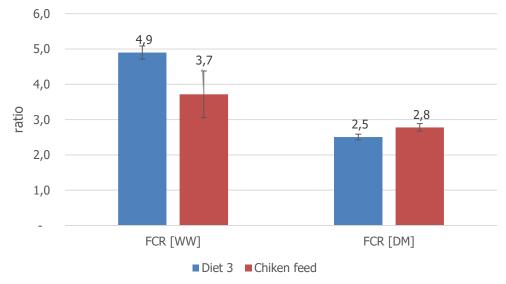

Survival rate of BSFL during the dietary experiment was 79-82%

DANISH TECHNOLOGICAL INSTITUTE

Validation of Diet 3 in pilot production

Total larval and insect frass production during validation

DANISH TECHNOLOGICAL INSTITUTE

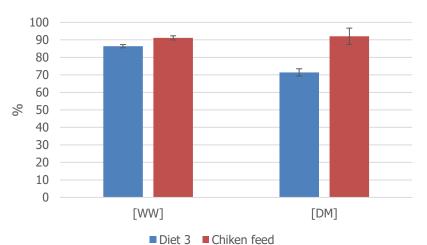


Production parameters

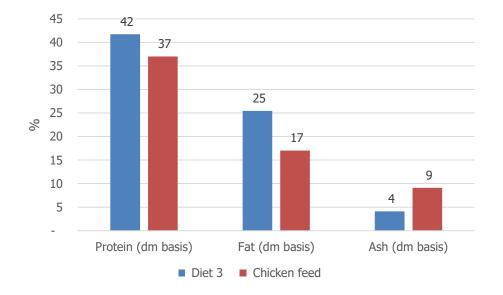
- Tray size: 60x40
- Temperature: 27°C
- Density: 10 larvae/cm²
- Feed used: Diet 3
- Total feed per replicate: 8 kg
- Dry matter: 19%
- Feeding episodes: 2
- Experimental time: 10 days

Validation of Diet 3 in pilot production

Feed conversion rate from two pilot productions using Diet 3 and Chicken feed


Survival rate

- Diet 3: 84%
- Chicken feed: 91%



Substrate reduction from two pilot productions using Diet 3 and Chicken feed

Validation of Diet 3 in pilot production

Total protein, lipid and ash content of BSFL reared on Diet 3 and Chicken feed (avg.)

sean Regional Development Fund

EUROPEAN UNIO

Nitrogen, Phosphorus and Potassium content in insect frass (Diet 3)

	Nitrogen	Phosphorus	Potassium
	(kg/tonne)	(kg/tonne)	(kg/tonne)
Insect frass	17.2	4.8	7.4

Demo-scale factory (~1,000 tonne BSFL/yr) ≥

2. Factory data and estimated yield			
Production areal	600	m2	
Production days	350	days/yr.	
Tray size	1	m2	
No. Handlings/tray	2	Handlings/tray/productions cycle	
Tray stack height	10	m	
Employees salary	25,000	dkk/month	
Production trays	30,000	trays in production	
Production trays	3,000	no. trays/day	
No. Handlings/day	6,000	no tray handeled /day	
Requiered time for handeling	16.67	hour/day	
Requiered personel	3.33	personel/day	
Feed requiered	4,596	tons/year [FW]	
Feed requiered	873	tons/year [DM]	
Neonates requiered	300	mil neonates/day	
BSFL production	1,164	tons/year [FW]	
BSFL meal	349	tons/year [DM]	
Insect frass	683	tons/year [70% DM]	

Return on investment (demo-scale)

5. Revenues		
BSFL meal	4,191,264	12000 dkk/tonne
Insect frass	682,500	1000 dkk/tonne
Total	4,873,764	dkk/year
6. Return on investment		
Revenues	4,873,764	dkk/year
OPEX costs	4,070,882	dkk/year
Diference	802,882	dkk/year
CAPEX	5,950,000	dkk/year
Return on investment	7.4	years

Conclusions

- By-products from Guldborgsund Municipality are feasible to be used for production of Black solider fly larvae (BSFL)
- Low FCR indicating high efficiency of the system
- High protein and lipid content
- A facility producing ~1,000 tonne BSFL (ww)/yr requires 5,000 tonne substrate (ww)/yr

DANISH TECHNOLOGICAL

Tak for opmærksomheden!

Kontakt

Lars-Henrik Lau Heckmann

E: <u>LHLH@teknologisk.dk</u>

M: 7220 1537

