

Estimerede behov for kulstofholdige brændsler og råvarer efter maximal elektrificering

Sector	Demand 2050 (EJ/y) Low High		Alternatives to fossil fuels and feedstock	Comments		
Steel	5	20	Hydrogen, biomass/bio-coke, CCS,	Focus on hydrogen in Germany. Hydrogen-based technology being developed by Thyssen- Krupp		
Cement	0*	30	Waste (SRF), waste from landfill mining, CCS, bio-methane, wood chips	Can take dirty, waste-based fuels. Ålborg Portland mentions landfill mining as potential future option. Also focus on CCS. * = 0 presumes all on landfill mining or CCS. Concrete reabsorbs CO ₂ during its lifetime. Landfill mining + CCS + enhanced re-absorption => cement/concrete can have a very large negative carbon footprint		
Plastic + other chemicals	60	120	Mechanical & chemical recycling, electrification, bio-plastic, e-naphta	According to LEGO, Dow and Shell work on electrification of crackers. Around 75 % of of processing energy for plastic making judged to be electrifiable		
Buildings	30	40	Bio-insulation e.g. PUR More timber in construction	Main demand for biomass in buildsings judge to be in floors, ceilings, kitchens, furniture. Growing population and living standars judged to be main driver for increase		
Industry	20	40	Electric boilers, bio-methane, e-methane	Electric biolers possible in many cases, but not for high temperature and flame		
Peak load heating	30	50	Electric boilers, heat pumps, CCS, biomethane	Peak load heating calls for low investment cost/MW => fuel based		
Electricity balancing	10	20	Bio-methane, wood chips, CCS, ammonia, hydrogen	Electricity balancing calls for low investment cost/MW => bio-methane		
Road transport	5	10	Bio-methane, biofuels, e-fuels, hydrogen			
Jetfuel	15	20	Electrification, hydrogen, HVO type biofuel, HTL, pyrolysis/gasification, e-fuels	Airbus claims focus on hydrogen. ATAG claims more than 50 % needs kerosens type. Due to slow fleet transition => min 75 % needs keroseene type by 2050		
Marine fuel	0*	20	Hydrogen, ammonia, bio-methanol, e-methanol, bio-methane, e-methane,	End fuel demand = 20 EJ/y by 2050 + conversion losses. * = 0 presumes all on non-carbon based propulsion like electricity, hydrogen or ammonia		
Food/feed/meat	(45)	(50)	Animal feed from BMP from CO ₂ , N ₂ + H ₂	Also a competitor for land/biomass. Demand not included in summation 'Total'		
Total	175	370		BAU scenario says total primary energy demand by 2050 = 900 EJ/y (WEC, 2013) Availability = 150-200 EJ/y by 2050 – newest study from ETC says 40-60 EJ/y		

Estimates are largely based on extrapolation of Danish system design studies on electrification possibilities applied to world scale

Pris/omkostnings-udvikling for biomasse og brint

Biomass type	Price ab supplier €/GJ	Global biomass supply EJ/y	Reference	
Straw	4.3	80 EA Energianalyse, 2011		
Wood chips (DK)	5.9	80	EA Energianalyse, 2011	
Wood pellets	10.3	80	EA Energianalyse, 2011	
Woody biomass ab forest	21	170	Frank et al., 2021 (IIASA – GLOBIOM model)	

Cost of hydrogen production from different production routes (excluding transport & storage costs) $\$ /kg H $_2$

NOTES: Blue hydrogen production: i) forecast based on SMR+CCS costs (90% capture rate) in 2020 transitioning to cheaper ATR+CCS technology in the 2020s; Green hydrogen production: i) favorable scenario assumes average LCDE of PV and onshore wind of lowest 33% locations (falling from \$22/MWh in 2020 to \$10/MWh in 2050) and average scenarios assumes median LCDE from lowest 75% locations (falling from \$39/MWh in 2020 to \$17/MWh in 2050) from BloombergNEF forecasts, ii) additional 20% (favorable) and 10% (average) LCDE savings included due to directly connecting dedicated renewables to electrolyser, iii) 18 % learning rate for favorable & 13 % for average scenario. Electrolyser capacity utilization factor: 45%. Comparison to BloombergNEF most favorable (\$0.55/kg) and average (\$0.86/kg) and Hydrogen Council favorable (ca. \$0.85/kg) and average (ca.\$1.45/kg) in 2050.

Forventet breakeven pris for bio-fuels og e-fuels

Fuel type & pathway	Straw €/GJ	Wood chips €/GJ	Biofuel ¹ €/GJ	Biomass conversion share
Diesel – from wood chip gasification + FT	-	5.9	37	84 %
Methanol – from wood chip gasification + catalysis	-	5.9	26	77 %
Methanol – from straw based biogas + catalysis	4.3	-	26	83 %
2G ethanol – from straw	4.3	-	38	89 %
Bio-SNG (bio-methane) – from straw	4.3	-	20	78 %

¹EA Energianalyse & SDU, 2016

Energinet's estimate on 2030-2035 e-methanol cost range

E-methane

E-methanol

• From biogas-CO2: e-methane cost ≈ 105 % of hydrogen cost

Conversion cost almost paid by heat sales – let's say +5 %

Hydrogen cost thereby around 65 % of fuel cost = 2/3

 \Rightarrow Share of conversion + CO2 = 5 %

CO2 cost ca. 30 % of fuel cost towards 2050

⇒e-methanol cost ≈ 150 % of hydrogen cost

 \Rightarrow Share of conversion + CO2 = 33 % by 2050

- From external CO2: a little cheaper than e-methanol, e.g. 140 % of hydrogen cost
- => Share of conversion + CO2 = 28 %

Konklusion

Tilgængeligheden af kulstof er begrænset i forhold til behovet i et fossilfrit samfund. Biokulstof forslår til under halvdelen af behovet
Der er derfor behov for Direct Air Capture, når de ikke-elektrificerbare dele af vores behov for energi, materialer og kemikalier skal forsynes med kulstofholdige råvarer
Jordbruget vil primært komme til at producere fødevarer, foder og andre højværdi-produkter, hvor den biologiske oprindelse og produktets særlige egenskaber begrunder dette
Kulstof til energi og materialer vil primært være side-produkter til ovenstående – jordbruget kommer ikke til at producere kulstof/bulk biomasse som råvare til energi og materialer som hovedprodukt
Fx kommer jordbruget ikke til at producere råvarer til metan, metanol, flybrændstof eller plastik som andet end restprodukter fra føde/foder produktionen

